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ABSTRACT
The three-dimensional unsteady computations of fish swimming with oscillating and deforming

fins of varying rigidity were carried out. The objective of these variable rigidity computations was
to investigate the importance of fin deformation on the fluid dynamics of force production. An
unstructured grid-based unsteady Navier-Stokes solver with automatic adaptive remeshing was
used to compute the flow about the wrasse through several complete cycles of pectoral fin
oscillation for each of the fins studied. The computations show that when the fin is made rigid by
specifying the motion with just the leading edge of the fin tip, the thrust produced during the
upstroke is less than half of the peak thrust produced by the flexible cases. During the downstroke,
the rigid fin and the fin with the motion prescribed with only the leading and trailing edges
produced no positive thrust, while all the flexible cases considered reproduced the thrust
production of the fully deformable fin.  In the case of the rigid fin, there is a substantial penalty in
lift during the upstroke. We have also computed the unsteady flow computations over the
Drosophila wing with the flight conditions ranging from hovering to a downward gust velocity
nearly equal to the mean wing tip velocity.  We showed that the wake capture mechanism which is
responsible for a peak in thrust production just after stroke reversal diminished with increasing
downward velocity and is entirely absent when this velocity reaches the mean wing tip velocity.
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INTRODUCTION
Flapping foil propulsion has received considerable

attention in the past few years as an alternative to the
propeller.  This mode of propulsion which involves no
body undulation, has many applications, such as
submersibles propulsion, maneuvering and flow control
which are of interest to the hydrodynamic community
and unconventional aerodynamics of Micro Aerial
Vehicles (MAV) and the study of aircraft flutter for the
aerodynamic community. In order to develop practical
MAVs, we have been investigating both fixed wings
with propeller driven thrust and flapping wings as a
possible propulsive mode.  For vehicles with very small
inertia, as in the case of MAVs, changes in wing
loading can immediately affect the flight path.  The
need for suppressing the effects of wind gusts becomes
important, more so when the airspeed of the vehicle
decreases, wind gusts become a large percentage of the
mean airspeed of the vehicle.  This is further
complicated by the fact that the gusts are not always
head-on.  Since control of these vehicles is one of the
most important problems, it is important to suppress
unwanted and sudden changes in direction, elevation
and orientation.

Flapping foil propulsion is also important in the
area of bio-fluid dynamics, for the study of propulsion
in insects, birds and certain aquatic animals. Flying
animals generate the lift and thrust as a consequence of
the interaction of the flapping motions of the wings
with the surrounding air.  These animals also perform
rapid maneuvers involving rapid plunging and pitching
motions. Conventional steady state theories are not
sufficient to generate enough forces required for flight
as shown by Ellington et al. (1996).  Therefore, we
need to understand the aerodynamics of flapping wings
undergoing highly three-dimensional and unsteady
motions with varying geometries.

The wing strokes of the insects can be divided into
two translational and two rotational phases.  During the
translational phases, upstroke and downstroke, the wing
moves through the air with high angle of attack and
during the rotational phases, pronation and supination,
the wings rotate rapidly and reverse direction.
Dickinson et al. (1999) has studied the effects of the
wing rotation in the fruitfly, Drosophila, and Walker
and Westneat (1997) have studied the kinematics of the
fin motion in a class of fishes, namely the bird wrasse,
experimentally. Liu and Kawachi (1998) have studied
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the flow over a hovering hawkmoth numerically.
Ramamurti and Sandberg have studied the force
production in Drosophila (2002a) and in a swimming
bird wrasse fish (2002b) computationally and have
shown good agreement with experimental results.

In this study, we seek to complement the
experimental studies of Walker and Westneat (1997) on
the fin kinematics, center of mass dynamics, and wake
visualization by computing the unsteady flow about the
bird wrasse Gomphosus varius  with pectoral fin
oscillation and deformation prescribed from the
experimental kinematics and Dickinson et al. (1999) on
the dynamics of the wing of a hovering Drosophila. We
continue our earlier computational focus on oscillating
control surface flows for non-undulating bodies.  The
primary objectives in this work, are to (1) investigate
the fluid dynamics underlying the generation of forces
during pectoral fin oscillation, (2) investigate the effects
of varying fin rigidity on the force production and (3) to
compare the fluid dynamics of a flapping appendage in
gusts with a flapping appendage during hovering.

THE INCOMPRESSIBLE FLOW SOLVER
The governing equations employed are the

incompressible Navier-Stokes equations in Arbitrary
Lagrangian-Eulerian (ALE) formulation which are
written as

† 

dv
dt

+ va ⋅ —v + —p = — ⋅s , (1)

† 

— ⋅ v = 0 , (2)
where p denotes the pressure, 

† 

va = v - w  the advective
velocity vector, where v is the flow velocity and w is
the mesh velocity and the material derivative is with
respect to the mesh velocity w.  Both the pressure p and
the stress tensor 

† 

s  have been normalized by the
(constant) density 

† 

r  and are discretized in time using
an implicit time stepping procedure. Thus the equations
are Eulerian for zero mesh velocity and Lagrangian if
the mesh velocity is the same as the flow velocity. The
present time-accurate flow solver is discretized in space
using a Galerkin procedure with linear tetrahedral
elements. The details of the flow solver have already
been discussed extensively elsewhere (Ramamurti et.
al. 1992, 1994, 1995, 1999) in connection with
successfully validated solutions for numerous 2-D and
3-D, laminar and turbulent, steady and unsteady flow
problems.

RESULTS AND DISCUSSION
The 3-D surface coordinates of the bird-wrasse, G.

varius, and the kinematics of the flapping pectoral fin
were obtained from Walker and Westneat (1997). In
that work, the computations were performed using 14
control points to describe the motion of the deforming
fin. The motion of these control points were obtained

from three distal markers and smoothed using a quintic
spline function (Walker, 1998). The procedure for using
this data in a computational investgation has been
described in detail by Ramamurti et al. (2002). In order
to carry out computations of the flow about oscillating
and deforming geometries, an unstructured mesh with
adaptive remeshing is employed. The mesh movement
algorithm is briefly summarized here.  First, the
Cartesian coordinates on the fin surface were then
transformed to a parametric space.  The coordinates of
the surface points were maintained to be constant in the
parametric space throughout the computation while the
Cartesian coordinates were computed according to the
prescribed motion of the control points. Unsteady
computations of Ramamurti et al (2002b) about the
deforming pectoral fins using this experimentally
measured fin kinematics were found to give excellent
agreement both in the time history of force production
throughout the flapping strokes and also the magnitudes
of the generated forces.

In the present work, a set of unsteady computations
is carried for several cycles of the fin oscillation for fins
of varying rigidity, using the incompressible flow
solver described above. By selecting a reduced number
of control points the rigidity of the fin is varied. Figure
1 shows the control points along the fin tip at the instant
when the fin is fully spread out from the body.  All the
14 control points that were supplied from experimental
observation are shown in Fig. 1A.  Using only one
control point at the leading edge of the fin tip and the
intersection of the leading and trailing edge rays with
the body of the wrasse, we can construct a fin that is
rigid, as shown in Fig. 1B. The kinematics of this rigid
fin is obtained from the motion of the single control
point obtained from the experiments.  Using the
coordinates of this control point at various instants
through the flapping cycle and the location of the root
points at the leading and trailing edges, we can obtain
the coordinates of the points on the fin tip, so that they
lie on a plane. Next, the trailing edge point was added
to the list of control points as shown in Fig 1C and
another point was added at mid-chord along the fin tip.
The resulting initial shape is shown in Fig. 1D.  Finally,
four control points were chosen out of the original 14,
such that the leading edge curvature of the fin is defined
properly. The points that were chosen are the leading
edge and two successive points close to the leading
edge and the trailing edge point. The resulting shape is
shown in Fig. 1E.

Unsteady Computations

Bird-Wrasse
Unsteady simulations were carried out with the bird-

wrasse swimming at 45 cm/s.  The stroke amplitude is
approximately 2.14 radians and the frequency of fin
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oscillation is 3.3 Hz for all configurations, resulting in a
mean tip speed of approximately 50 cm/s.
Computations were carried out for more than 4 cycles
of fin oscillation using a computational mesh consisting
of approximately 150K points and 840K tetrahedral
elements, for the four modified fin shapes. The time-
varying 3-D lift and thrust, computed by integrating the
surface pressure over the wrasse body and fin at each
time step throughout the simulation, are shown in Fig.
2.

In the case of the rigid fin, a thrust with a peak value
of 0.007 N is produced at the beginning of the
downstroke, as shown in Fig. 2A.  This is similar to the
increase lift just after stroke reversal in the hovering
Drosophila, reported by Dickinson et al. (1999) and
Ramamurti and Sandberg (2002a) and is attributed to
the wake capture mechanism. The thrust then quickly
drops and a drag force is produced for the remainder of
the downstroke.  In the case of the flexible fin with two
control points, namely the leading and trailing edges of
the fin tip, the wake capture peak is absent and no
positive thrust is produced during the entire
downstroke.  In contrast, all the other cases of the
flexible fins produce the same thrust during the
downstroke as the fully deformable fin with motion
prescribed by all14 control points, starting near zero at
the beginning of the downstroke and increasing to a
maximum of 0.008 N at about 30% of the downstroke.
During the upstroke, the rigid fin produces a peak thrust
of 0.022 N at about 61% of the upstroke, compared to a
peak value of 0.046 N produced by the flexible fin at
64% of the upstroke.  The flexible fin with two control
points achieves a peak value of 0.046 N but at an earlier
time, about 47% of the upstroke.  The thrust produced
in the case of the flexible fin with three control points is
very similar to the fully flexible case.  If only the
leading edge curvature of the fin is retained, as in the
case with 4 control points, the peak thrust achieved
during the upstroke is 0.0675 N and occurs at
approximately 60% and 92% of the upstroke.  It is clear
that the results using 3 control points matched exactly
with the results obtained using all 14 control points.
This is to be expected as the motion of the 14 control
points in the experiments were derived from these three
points.  During the downstroke, the lift, shown in Fig.
2B, produced by the flexible fin using 3, 4 and 14
control points attains a peak value of approximately
0.08 N at 37% of the downstroke; a peak lift of 0.123 N
is attained at 30% of downstroke with the leading and
trailing edge control points and a maximum lift of 0.16
N is attained at about 40% of the downstroke with a
fully rigid fin.  But, the rigid fin loses the lift during the
upstroke with a minimum lift of –0.37 N at about 50%
of the upstroke.  The minimum lift attained in the case
with 2 control points is approximately –0.145 N, which
occurs at about 39% of the upstroke, and for the case

with 4 control points a minimum lift of –0.104 N is
attained at about 43% of the upstroke.  Again, the case
with 3 control points matches exactly with the fully
flexible fin, as expected.  These results suggest that the
fish or a vehicle with a rigid fin or the fin controlled by
just 2 points will experience much larger amplitude
vertical excursions than with a flexible fin.

Figure 3 shows the pressure distribution on the
surface of the Bird-wrasse and its fin at t!= 0.861 s for
the fully flexible fin case and the flexible fin with 4
control points. The orientation of the fin in both the
cases is nearly the same.  The pressure is non-
dimensionalized with respect to the dynamic head using
the mean tip velocity of 50cm s-1. Comparing Fig. 3B
and 3D, we can see that the pressure near the leading
edge is higher in the 4 control point case and it extends
over a wide region on the upper fin surface.  From Figs.
3A and 3C, it is also clear the minimum pressure on the
lower surface of the fin is considerably lower (darker
blue) in the 4 control point case compared to the fully
flexible fin, resulting in a larger thrust force.  Figure 4
shows the velocity vectors on a plane z = 1.5 cm in the
wake of the pectoral fin at t = 0.861 s, which
corresponds to nearly the instant at which peak thrust is
produced during the upstroke.  Although the leading
edge curvature is the same in Figs. 4A and 4B, the
curvature of the fin in the mid-chord is reduced in the
case where only 4 control points were used.  This
reduces the recirculation both in magnitude and extent
on the upper surface of the fin.  Hence, the pressure on
this surface is higher as shown in Fig. 3D, resulting in a
higher thrust.

The increase in thrust production just after the stroke
reversal to begin the downstroke, in the rigid fin is
investigated next.  Figure 5A shows the velocity vectors
at an instant where the thrust production reaches a local
maximum for the rigid fin.  Here, the presence of wake
vortices from the previous upstroke in the fin region is
clearly evident.  These velocity vectors when compared
to the case of the fully deformable fin at a similar
instant, Fig. 5B, do not show the presence of the
upstroke vortices in the fin region.  The presence of
upstroke vortices also result in an increased pressure,
Fig. 5C, near the leading edge approximately 70% of
the span away from the root, resulting in an increased
thrust at this instant.

Figure 6 shows the orientation of the pectoral fin and
the pressure distribution at t = 0.954 s, when the thrust
production is minimum for the flexible fin case using 2
control points.  At this instant, the pressure distribution
on both sides of the fin are shown in Fig. 6A and 6B,
for the fully flexible case.  Comparing this with the
pressure distribution for the case with 2 control point,
Figs. 6C and 6D, we see that in both cases, the bottom
portion of the fin experiences high pressure near the
leading edge. But in the case of the fully flexible fin,
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the fin at the leading edge tip is oriented in such a
manner so as to produce a thrust.  Also, in the case of
the fin with 2 control points, a large low pressure region
forms near the junction of the fin and the body on the
upper surface contributing to a drag.  The reason for
this low pressure region is due to the presence of a large
recirculation region seen in Fig. 7. Although the leading
and trailing edges in both case are prescribed in the
same manner, the curvature in the 2 control point case,
Fig 7B, is pronounced in the middle of the fin
compared to the fully flexible case, Fig. 7A, leading to
a large recirculation, resulting in lower pressure on the
upper surface.

The origin of the loss of lift during the upstroke in the
case of the rigid fin is due to the increased angle of
attack the fin experiences with respect to the resultant
forward velocity of the fish and the velocity of the fin.
In the case of the fully flexible fin, the fin is flexed
concave upwards reducing the angle of attack at the
leading edge whereas the flow is directly incident on
the upper surface of the rigid fin.  This is clear from the
pressure distribution on the rigid fin at t= 0.855 s, Fig.
8D and 8E, compared to that of the fully flexible case at
a close instant, Figs. 8A and 8B.  In both cases, a high
pressure region is formed at the leading edge of the fin
tip on the upper surface of the fin and lower pressure on
the bottom surface, contributing to a downward force.
But, the magnitudes of these pressures are much higher
in the rigid case, thus producing a large downward
force.  In the case of the fully flexible fin, this loss of
lift is offset by the upward force in the region close to
the body where high pressure exists on the bottom
surface and lower pressure on the upper surface.  The
lower pressure on the upper surface appears due to the
presence of a recirculation region at the body junction,
shown in Fig. 8C which is absent in the rigid case, Fig.
8F due to the lack of curvature of the fin.  Figure 9
shows the pressure distribution on the fully flexible fin
(A and B) and the rigid fin (C and D) at an instant close
to the maximum lift production during the downstroke.
Again, the lower side of the fin has higher pressure with
the rigid fin experiencing larger magnitude of pressure
difference, producing a larger lift.

Drosophila
The configuration of the hovering Drosophila

melanogaster is shown in Fig. 10A. The coordinate
system (x,y,z) is fixed to the body with the x coordinate
normal to the stroke plane.  During the translational
phases (upstroke and downstroke) the wing moves from
close to the y axis through an angle f, the wingbeat
amplitude.  The flapping wing configuration used in the
flow simulations is shown in Fig. 10B.  This is based on
the experimental arrangement of Dickinson et al.
(1999) and is also described by Ramamurti and
Sandberg (2002). The planform of the wing is derived

from the Drosophila wing and is 25 cm long and 3.2
mm thick.  Fig. 10B shows the position of the wing at
three different times during the flapping cycle.  The
upward gust velocity V  is varied from a hovering
condition of zero to the mean tip velocity of the
flapping wing. The mean wing-tip velocity is defined
as, 

† 

Ut = 2fnR , where R is the wing length (25 cm), n is
the frequency of flapping motion (0.145 Hz), and f is
the wingbeat amplitude (peak to peak, 2.79 radians).

The flow solver described above was used to
compute the flow past the Drosophila wing undergoing
rotation and translation.  First, an inviscid solution was
obtained using a grid consisting of 178,219 points and
965,877 tetrahedral elements.  The unsteady solution
was carried out for 5 cycles of oscillation of the wing
using prescribed kinematics.  The kinematics of the
wing is given in detail by Ramamurti and Sandberg
(2002a). The surface pressure on the wing is integrated
to obtain the forces on the wing along the three axes
(Fx, Fy, Fz). The thrust T and the drag D forces are then

computed as, 

† 

T = -Fx  and 

† 

D = (Fy
2 + Fz

2) ,

respectively. These forces were nondimensionalized as
follows:

† 

CT =
T

1
2

rUt
2c Rr2

2 (s)
 and  

CD =
D

1
2

rUt
2c Rr2

2 (s)
 ,

(3)

where r is the density of the mineral oil (880 Kg m-3),
Ut is the mean wing-tip velocity, 

† 

r2
2 (s)  is the second

moment of the area (0.4), 

† 

c = 2R / AR  and AR  is the
aspect ratio of the wing.

 The downward gust velocity is then increased from a
hovering condition to the mean wing tip velocity and
the unsteady computations are performed.  Figure 11
shows the time history of the thrust and drag forces
during one cycle of the wingbeat for the various gust
velocities considered.  The coefficient of thrust (CT)
achieves a maximum just prior to the stroke reversal
(Fig 11A). For a hovering case, this peak value is 2.05
and as the downward velocity is increased the
magnitude of this peak diminishes to 1.15 for the
maximum downward velocity (V  = 20 cm s-1)
considered.   This effect is expected as this peak is
mainly due to the rotational effect of the wing, which is
rotating in a counterclockwise direction about the y-axis
at the beginning of the downstroke.  A downward
velocity in the x-direction will diminish the Magnus
effect which produces the lift and hence the peak thrust
is reduced.  This rotational effect is also responsible for
the increase in drag coefficient prior to stroke reversal
seen in Fig 11B.  These rotation effect peaks also shift
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closer to the stroke reversal as the velocity is increased.
From Fig 11A, it is clear that a peak thrust is produced
just after the stroke reversal.  This peak is attributed to
the wake capture effect, in which the wing passes
through the shed vorticity of the previous stroke. Figure
12 shows the velocity vectors on a plane y = 10cm at
the beginning of the downstroke.  For symmetric
rotation, the wing chord is aligned with the x-axis at the
beginning of the stroke reversal.  For the hovering case,
a vortex is seen near the leading edge on the bottom
surface of the wing.  This vortex was shed during the
previous upstroke.  As the downward gust velocity is
increased the strength of this vortex reduces in strength
and disappears entirely at a velocity V= 20 cm s-1.  This
is due to the fact that the effective angle of attack (a) of
the wing with respect to the combined velocity vector
of the translational and downward velocity is reduced
as the gust velocity is increased.  Figure 13 shows the
vorticity contours in the spanwise direction on a plane
z¢ = 10cm from the center of rotation. It is clear from
Fig. 15A that the leading edge vortex is formed during
the upstroke in the hovering case.

SUMMARY AND CONCLUSIONS
We computed the unsteady dynamics about a bird

wrasse with flapping and deforming pectoral fins using
a new moving mesh capability for unstructured
adaptive meshes. The unsteady computations using the
prescribed kinematics of the pectoral fin have been
compared experimental results.  By selecting a reduced
number of control points used to define the fin
kinematics, the rigidity of the fin was varied. Several
unsteady computations were performed fro various
rigidity of the fin ranging from a fully rigid to a fully
deformable fin.  We found that when the fin is made
rigid by specifying the motion with just the leading
edge of the fin tip, the thrust produced during the
upstroke is less than half of the peak thrust produced by
the flexible cases. During the downstroke, the rigid fin
and the fin with the motion prescribed with only the
leading and trailing edges produced no positive thrust.
All the flexible cases reproduced the thrust production
of the fully deformable fin. In the case of the rigid fin, a
wake capture mechanism was observed that resulted in
a small thrust increase just after the beginning of the
downstroke.  During the upstroke, when only the
leading edge curvature is prescribed, as in the case with
4 control points, the peak thrust exceeds the fully
deformable fin. Although the leading edge curvature
was maintained to be the same between the 4 control
point case and the fully deformable fin, the curvature in
the mid chord region is much reduced when only the
leading edge curvature is specified. This led to a
smaller recirculation region on the upper surface of the
fin producing extra thrust. From the point of view of lift
production, we found that all of the cases with flexible

fins performed in a similar manner except the fin
controlled by just the leading and trailing edge points.
In the case of the rigid fin, there was a substantial loss
of lift during the upstroke.  Therefore, the fish or a
vehicle with rigid fin or a fin controlled by just the
leading and trailing edge points would experience much
more vertical excursions that one with a flexible fin.

We have also performed unsteady flow computations
over the Drosophila wing with the flight conditions
ranging from hovering to a downward gust velocity
nearly equal to the mean wing tip velocity.  The effect
of this downward velocity is a reduction in the
rotational forces that produces a peak in the thrust and
drag just prior to stroke reversal.  We showed that the
wake capture mechanism which is responsible for a
peak in thrust production just after stroke reversal
diminished with increasing downward velocity and is
entirely absent when this velocity reaches the mean
wing tip velocity.

ACKNOWLEDGEMENTS
This work was supported by the Office of Naval

Research through the Tactical Electronic Warfare
Division Micro Air Vehicles Program of the Naval
Research Laboratory. The computations carried out for
this work were supported in part by a grant of HPC
time from the DoD HPC centers, ARL MSRC SGI-
O2K and NRL SGI-O2K.

REFERENCES

Dickinson, M. H., Lehmann, F.-O. and Sane, S. P.
(1999). Wing rotation and the aerodynamic basis of
insect flight. Science  284, 1954-1960.

Ellington, C. P., Van den Berg, C. and Willmott, A.
P. (1996). Leading-edge vortices in insect flight.
Nature  384, 626-630.

Liu, H. and Kawachi, K. (1998). A numerical study of
insect flight. J. comp. Physics. 146, 124-156.

Ramamurti, R. and Löhner, R. (1992). Evaluation of
an Incompressible Flow Solver Based on Simple
Elements, Advances in Finite Element Analysis in
Fluid Dynamics, FED 137, Editors: Dhaubhadel,
M. N. et al., ASME Publication, New York, 33-42.

Ramamurti, R. and Sandberg, W.C. (2002a). A
Three-Dimensional Computational Study of the
Aerodynamic Mechanisms of Insect Flight, J. Exp.
Biol. 205, 1507-1518.

Ramamurti, R., Löhner, R., and Sandberg, W. C.
(1994). Evaluation of a Scalable 3-D
Incompressible Finite Element Solver, AIAA-94-
0756, Washington, DC.

Ramamurti, R., Löhner, R., and Sandberg, W. C.
(1995). Simulation of a Torpedo Launch Using a 3-



6

D Incompressible Finite Element Flow Solver,
AIAA-95-0086, Washington, DC.

Ramamurti, R., Löhner, R., and Sandberg, W. C.
(1999). Computation of the 3-D Unsteady Flow
Past Deforming Geometries, Int. J. Comp. Fluid
Dyn., 13, 83-99.

Ramamurti, R., Sandberg, W.C. and Löhner, R.
(2000). Simulation of the Dynamics of Micro Air
Vehicles, AIAA-2000-0896, Reno, NV.

Ramamurti, R., Sandberg, W.C., Löhner, R.,
Walker, J. A. and Westneat, M. W.  (2002b).
Fluid Dynamics of Flapping Aquatic Flight in the
Bird Wrasse: 3-D Unsteady Computations with Fin
Deformation, J. Exp. Biol. 205, 19, 2997-3008.

Walker, J. A. and Westneat, M. W. (1997).
Labriform Propulsion in Fishes: Kinematics of
Flapping Aquatic Flight in the Bird Wrasse,
Gomphosus Varius. (Labridae), J. Exp. Biol. 200,
1549-1569.

Fig. 1. Shapes of the fully deformable Bird-wrasse fin and modified fin at an instant when the fin is fully extended.
(A) The experimentally observed deformable fin with 14 control points, (B) modified rigid fin with a control point
on the leading edge and at the tip of the fin, (C) flexible fin with control points at the leading and trailing edges of
the fin tip, (D) flexible fin with 3 control points, and (E) flexible fin with 4 control points closer to the leading edge.
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Fig. 2.  Effect of fin flexibility on the time variation of (A) thrust and (B) lift forces.

Fig. 3. Surface pressure distribution on the Bird-wrasse at an instant when the thrust is maximum during the
upstroke.  The pressure is non-dimensionalized with respect to the dynamic head of the mean tip velocity. (A, B) 14
control points were used to define the kinematics of the fin. (A) view from the front of the lower side of the fin. (B)
view from the back of the fin.  (C, D) 4 control points were used to define the kinematics of the fin.  (C) view from
the front of the lower side shows lower pressure compared to (A) and (D) view from the back of the upper side of
the fin show higher pressure compared to (B), resulting in a higher thrust.

 

Fig. 4. Velocity vectors on a plane z = 1.5 cm at an instant t = 0.861 s, when the thrust production is maximum
during the upstroke with fin kinematics prescribed with (A) 14 control points and (B) with 4 control points.  The
swimming velocity of the fish (45 cm!s-1) is subtracted from the x component of the velocity and only the in-plane
components are shown to reveal the vortical structures.  LEV, leading edge vortex; TEV, trailing edge vortex.
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Fig. 5. Thrust production in the rigid fin just after stroke reversal, t = 0.918 s. (A) velocity vecors on a plane z = 1.5
cm, show vortices from the wake of the previous upstroke, (B) velocity vectors just after stroke reversal for the fully
deformable fin showing the absence of the vortices in the fin region, and (C) pressure distribution on the lower side
of the rigid fin showing higher pressure region due to the presence of the wake vortices.

Fig. 6. Pressure distribution on the Bird-wrasse and its pectoral fin at t = 0.954 s during the downstroke, (A, B) when
the thrust reaches maximum for the fully flexible fin and (C, D) when the thrust reaches a minimum for case with
the fin kinematics prescribed by 2 control points.

Fig. 7. Velocity vectors on a plane z = 1.5 cm at an instant t = 0.954 s, (A) when the thrust production is maximum
during the downstroke with fin kinematics prescribed with 14 control points and (B) when the thrust production
reaches a minimum with 2 control points.
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Fig. 8. Surface pressure contours on the pectoral fin and velocity vectors on a plane z = 1.5 cm at an instant when
the lift is minimum during the upstroke for the rigid fin.  (A-C) fully flexible fin; (D-F) rigid fin. Pressure
distribution on the lower surface viewed from the bottom(A, D) and on the upper surface viewed from the top (B,
E).  (C) Velocity vectors show a large recirculation on the upper surface, lowering the pressure and thus increasing
lift when compared to (F) a fully attached flow in the rigid case.

Fig. 9. Surface pressure distribution on the pectoral fin at an instant when the lift is near maximum during the
downstroke, (A, B) for the fully flexible fin and (C, D) for the rigid fin. (C) Lower surface of the fin viewed from
the bottom shows higher pressure at the distal edge of the fin and most of the lower surface when compared to (A)
and the pressure on the upper surface is much lower for the rigid case (D) when compared to the fully flexible fin
(B), resulting in a higher lift force.
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Fig. 10. (A) Schematic of a hovering Drosophila showing the orientation of the x,y,z coordinate system and the
direction of the gust velocity V.  (B) Schematic diagram of the flapping Drosophila wing. The position of the wing
is shown at three different times during the flapping cycle. The coordinate system (x¢,y¢,z¢ ) is fixed to the wing, and
the wing rotates about the z¢  axis throughout the cycle. R, wing length; f wingbeat amplitude.

Fig. 11. Time Variation of (A) the thrust coefficient through one cycle of flapping and (B) drag coefficient near the
beginning of the downstroke.

Fig. 12. Velocity vectors at the beginning of the downstroke at t = 11.81 s. (A) A large vortex shed from the
previous upstroke is seen near the leading edge (L.E.) in hovering, (B) and is smaller for V = 5 cm s-1.
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Fig. 12 (cont’d.) Velocity vectors at the beginning of the downstroke at t = 11.81 s. (C) reduces further in size for V
= 10 cm s-1 and (D) is absent for V = 20 cm s-1.

Fig. 13. Vorticity contours on a plane z¢ = 10cm during stroke reversal. Before stroke reversal (A, B), a leading edge
vortex is seen on the bottom surface of the wing and continues to be present at stroke reversal (C) and beyond (D).
At t = 12.24 s, this leading vortex from the previous upstoke disappears completely (E) and a vortex on the upper
side of the wing begins to form (F).
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